
Active Botnet Probing to Identify Obscure Command and Control Channels

Guofei Gu1, Vinod Yegneswaran2, Phillip Porras2, Jennifer Stoll3, and Wenke Lee3

1Texas A&M University 2SRI International 3Georgia Institute of Technology
guofei@cse.tamu.edu, {vinod, porras}@csl.sri.com, {jstoll@,wenke@cc.}gatech.edu

Abstract—We consider the problem of identifying obscure
chat-like botnet command and control (C&C) communications,
which are indistinguishable from human-human communi-
cation using traditional signature-based techniques. Existing
passive-behavior-based anomaly detection techniques are lim-
ited because they either require monitoring multiple bot-
infected machines that belong to the same botnet or require
extended monitoring times. In this paper, we explore the
potential use of active botnet probing techniques in a network
middlebox as a means to augment and complement existing
passive botnet C&C detection strategies, especially for small
botnets with obfuscated C&C content and infrequent C&C
interactions. We present an algorithmic framework that uses
hypothesis testing to separate botnet C&C dialogs from human-
human conversations with desired accuracy and implement
a prototype system called BotProbe. Experimental results on
multiple real-world IRC bots demonstrate that our proposed
active methods can successfully identify obscure and obfuscated
botnet communications. A real-world user study on about
one hundred participants also shows that the technique has
a low false positive rate on human-human conversations. We
discuss the limitations of BotProbe and hope this preliminary
feasibility study on the use of active techniques in botnet
research can inspire new thoughts and directions within the
malware research community.

I. INTRODUCTION

Botnets refer to large collections of compromised ma-
chines infected with a specific malware instance (i.e., a bot),
which enable them to be commandeered by an individual
often referred to as a “botmaster”. Botnets may range
in size from tens to hundreds of thousands of systems,
often spanning a multitude of home, educational and cor-
porate networks, and are typically exploited as platforms
for conducting a wide range of criminal activities, including
spam campaigns, identity theft, and denial-of-service (DoS)
attacks. The magnitude of these collections and the potency
of attacks afforded by their combined bandwidth and pro-
cessing power have led to a recognition of botnets as one
of the premier threats to Internet security.

A unique property of a botnet that separates it from
other malware families is the command and control (C&C)
channel, which the botmaster uses to command the bot
army to perform different tasks. Although botnet developers
have the option of devising novel protocols for C&C, most
contemporary botnet C&C communications are overlaid
onto existing protocols such as IRC (Internet Relay Chat)
and HTTP. This prevailing tendency to overlay botnet C&Cs

on existing protocols may have several plausible explana-
tions: (a) existing protocols provide greater flexibility in
using available server software and installations; (b) existing
protocols invoke less suspicion than neoteric protocols; (c)
existing protocols work so well so that there is no sufficient
incentive for botnets to innovate.

Although HTTP-based botnets (e.g., Bobax [26] and its
new variant Kraken) and P2P botnets (e.g., Nugache [19],
Storm [11], and Conficker [22]) have recently garnered con-
siderable attention, we should note that IRC-based botnets
remain a lingering and significant threat [2], [6]. The persis-
tence of IRC-based botnet communication channels could be
attributed to the simplicity and flexibility afforded by IRC’s
text-based protocol. In addition, contemporary IRC botnets
have evolved from simple dialects to a new era where C&C
content in IRC messages are obfuscated (e.g., using a custom
dialect, a foreign language, or a naive obfuscation technique
such as simple XOR, substitution, or hashing). By using
obfuscated IRC messages (e.g., “hello” instead of “scan”),
these botnets can evade signature-based detection [10], [21],
[25] and honeypot-based tracking approaches [23]. Indeed,
we have observed a substantial collection of current IRC
botnets utilizing obscure C&C communications [2], [6].

Behavior-based botnet detection approaches can detect
botnets through behavioral anomalies. Many such systems
have been proposed recently [12]–[14], [17], [27], [34].
However, they all have limitations. Some techniques (e.g.,
[12], [14], [17], [27], [34]) use group analysis for detection.
However, these techniques require the presence of multiple
bots in the monitored network and cannot help much when
there is only one infection in the network. Furthermore,
techniques such as (e.g., [12], [14]) may require a longer
time in collecting sufficient evidence for detection. For
example, BotMiner has an offline correlation engine that
performs daily group analysis on C-plane data. BotSniffer
is more agile than BotMiner, but still requires observing
several rounds of messages to gather sufficient confidence
in its spatio-temporal correlation. BotHunter uses a (mainly)
signature-based approach to track bot infection dialogs and
requires observing activity from multiple stages of the bot
lifecycle to declare an infection. In contrast, real-world IRC-
based botnet C&C communications can be quiet, i.e., some
have infrequent C&C interactions because the botmaster is
not always online to command the bot army. If the frequency
of C&C interactions is low enough, botnets could potentially

2009 Annual Computer Security Applications Conference

1063-9527/09 $26.00 © 2009 IEEE

DOI 10.1109/ACSAC.2009.30

241

evade detection by these systems. Indeed, steathy botnets
with small sizes, obfuscated C&C dialogs, and infrequent
C&C interactions pose an ongoing challenge to the malware
research community.

To address this challenge, we explore new botnet
detection techniques that actively collect evidence. We
intend to answer the following questions: Assume there
is only one round of (obscure) chat-like botnet C&C
interaction from one bot,1 can we still detect the bot with
a high probability? What if we observe zero rounds of
interaction? We will show that our solution can achieve
the detection goal for many real-world botnets that use
chat-like C&C protocols such as IRC, and complement
existing techniques in many cases.

Key Observations: We posit that instead of passively
inspecting two-way network flows, one can engage in
the active manipulation of selected suspicious sessions
to better identify botnet dialogs. Our detection strategy,
which we call active botnet probing, is based on two
observations. First, a typical botnet C&C interaction has a
clear command-response pattern, and therefore a stateless
bot will tend to behave deterministically2 to dialog replays,
whereas interaction with a human-controlled end point will
be nondeterministic. Second, bots are preprogrammed to
respond to the set of commands they receive and, unlike
humans, bots have limited tolerance for typographical errors
in conversations (aka the Turing test [28]).

New Approach and System: Based on the above
observations, we develop a set of active probing techniques
to detect stateless chat-like botnet communications,
regardless of whether or not the botnet communications
are protected using simple obfuscation. At first glance,
these active techniques may be aggressive and controversial
because of the interference they may introduce to normal
benign communications/chatting. While a legitimate
concern, we propose to ameliorate this interference in
multiple ways. First, we provide a set of candidate filters
that use heuristics to filter out a large class of well-behaved
connections. Second, we provide a hypothesis testing
framework that enables network administrators to tune
the level of expected interference with detection rates. In
addition, a whitelist approach to avoid disturbing known
critical/legitimate programs/sessions can also be used to
reduce potential interference. Finally, we argue that limited
interference might be acceptable in pure IRC-like chatting
channels on which no critical applications are built, and
certain deployments such as military scenarios, particularly

1One round of C&C interaction is defined as a typical command-then-
response interaction. We further clarify this command-response pattern of
botnet C&C and various types of responses in Section II.

2Examination of popular bot source code and binaries reveals that most
bot communications are stateless.

if users are educated about the presence of such probing
monitors. We develop the BotProbe prototype system to
demonstrate this active technique. By actively probing
botnets, we can accumulate enough evidence (without
passively waiting) of cause-effect correlation that exploits
the command-response patterns of botnet C&Cs. We need
to observe only one or even zero rounds of actual C&C
interaction before probing. Thus, we can greatly shorten
the detection time compared to a passive approach.

Contributions of this paper:
• We propose active botnet probing based on cause-

effect correlation as a novel approach to complement
existing passive botnet C&C detection. We envision the
detection of future botnets will require a combination
of different detection features and techniques because
botnets are very complex and dynamic. We believe
our proposed new active probing technique, although
has limitations, can provide a unique perspective and
inspire new research directions.

• We present a hypothesis testing framework for detect-
ing deterministic communication patterns. We develop
BotProbe, a prototype implementation of the frame-
work that validates our approach with contemporary
IRC-based bots such as Sdbot, Phatbot, Rbot, RxBot,
Agobot, Wargbot, and IRCBot. In addition, we show
with a real-world example that BotProbe can also assist
with automating a chosen-ciphertext attack to break the
encryption of some botnet C&C.

• We conduct a real user study on around 100 users to
evaluate false positive rates.

II. PROBLEM STATEMENT AND ASSUMPTIONS

Our goal is to evaluate the feasibility of identifying chat-
like botnet C&C channels using active network traffic in-
spection strategies, while observing only a limited number of
C&C interactions (one or even zero) on a single bot, thereby
to complement existing passive approaches. By active, we
mean that we assess traffic for suspicious traffic sessions,
which may lead us to dynamically inject packets that will
probe the internal client to determine whether that side of
the communicating/chatting session is being managed by a
human or a bot. To achieve the goal, first we need to examine
the invariant that can be used to differentiate a bot from
human chatting. We observe that bots are preprogrammed
to respond to certain predefined commands, and these re-
sponses are consistent across command repetition. Different
from normal human chatting, the above command-response
pattern has a strong cause-effect correlation, i.e., the com-
mand causes the response in a deterministic way. This is the
key intuition we use in designing our algorithm. In addition,
we observe that bots are different from humans in tolerating
typographical errors, i.e., if the command is altered by even
one character, bots are not likely to process the command

242

properly. This auxiliary intuition helps us design one of our
detection algorithms. Before introducing our algorithms and
system in detail, we present the adversary model, i.e., the
detailed communication patterns that we seek to identify
when adversaries communicate with compromised machines
inside our network perimeter.

We now discuss our adversary and detection assumptions
below. We will discuss limitations and policy/risk concern
further in Section V.

Adversary Assumption: Botnet C&C communications
are well-structured duplex flows, similar to a command-
response protocol, i.e., a bot should respond when it re-
ceives a predefined command in a reasonable time. The
network-level response of a bot to an (obfuscated) command
might be either message response or activity response, or
both [14]. A typical example of message response is an
IRC PRIVMSG message. For example, when the botmaster
issues a “.sysinfo” command,3 each bot replies with
a PRIVMSG message telling its host system information,
such as CPU, memory, and software version. There are
three most common activity responses: scan response (bots
perform network scan or DoS attack), third-party access
(e.g., bots connect to a certain address to download/update
their binary), and spam response (bots send spams). For
instance, when the botmaster issues a scanning command
(e.g., “.scan.startall”), bots usually perform network
scanning and reply with the scanning progress and/or any
new victims they have infected. This involves both an
activity response (scan) and a message response. One may
define other possible responses, but from our observation of
live bot infections, these aforementioned types of responses
are highly representative and regularly encountered.

Fortunately, the assumption of command-response pattern
holds in almost all existing botnets, because the botmaster
needs the bots to perform some (malicious) activity, and
usually requires feedback to track the bot-infected machine
information and execution progress/result from its bot army.
Thus, we can observe message/activity responses corre-
sponding to most botnet commands. According to a hon-
eynet technical report [36], about 53% of botnet commands
observed in thousands of real-world IRC-based botnets are
scan related (for propagation or reconnaissance) and about
14.4% are related to binary download (for malware up-
date). Also, many HTTP-based botnets are primarily used
for sending spam [26]. Thus, for most infections, we can
expect to observe (malicious) activity responses with a high
probability [5].

Detection Assumption: We now discuss the design as-
sumptions used in defining our architecture for actively
probing and detecting botnet C&C channels:

• Input Perspective. Our assumed solution will reside at

3We assume the botmaster could obfuscate the C&C channel using simple
encryption or substitution, e.g., say “hello” instead of “.sysinfo.”

the network egress point (as a middlebox), where it
can observe all flows that cross the network perimeter.
Furthermore, the system is in-line with the communica-
tion, and has the authority to inject or modify inbound
packets, as necessary.

• Chat Protocol Awareness. Our solution incorporates
knowledge of the standard (chat) protocols that botnets
use to overlay their C&C communications. For exam-
ple, in the case of IRC-based bots, we can comprehend
IRC keywords and PRIVMSG message exchanges.

III. ACTIVE BOTNET PROBING: ARCHITECTURE AND

ALGORITHMS

A. Architecture Design

Our botnet C&C detection architecture has two integral
components, as shown in Figure 1.

Internet

Router Middlebox ...

Filtering,
Protocol matching,

Sampling

Active Probing,
Hypothesis testing

Network Traffic Network Traffic

Figure 1. Two-layer architecture using active techniques for identifying
botnet C&Cs.

The first component performs benign traffic filtering,
protocol matching (selects protocols often exploited for
C&C transmissions, e.g., IRC), and flow sampling. Thus, it
leaves only a small portion of highly suspicious candidates
worthy of deeper examination.4 Benign (chat-like) traffic
filtering modules are implemented using a general traffic
feature vector (e.g., duration of the flow, average bytes per
packet, average bytes per second) similar to [17], [20], [27].
Finally, in the case of IRC-based C&C, we use the following
protocol matching policies to perform detection in a port-
independent fashion:

1) A traffic filter removes non-TCP flows.
2) Port-independent IRC protocols are keyword matched,

e.g., “NICK,” “USER,” “PRIVMSG.” This analysis
occurs on the first few packets of established TCP
flows (which indicate the beginning of an IRC session
[1]).

3) A volume filter mainly focuses on infrequent IRC
chat channels (because overly chatty IRC channels are
unlikely to be used for botnet C&C).

4As always, this is a trade-off between performance and accuracy.

243

4) A message filter finds a candidate list of command-
like packets (IRC PRIVMSG and IRC TOPIC) that
can cause client responses.

Once we have completed the above down-selection to our
candidate flows, we then focus our analyses on the TOPIC
and PRIVMSG message packets, where the overlay C&C
commands/responses typically reside. In addition, one can
incorporate any other behavior-based logic into these filters.

The second component implements what we refer to as
our BotProbe analysis scheme. To illustrate the scheme, let
us suppose that we have a candidate suspicious IRC session
and we need to further identify whether there is another layer
of overlay C&C-like protocol. We observe a command-then-
response-like packet pair (Pc, Pr) where Pc is a short packet
from the server, and Pr is a response from the client imme-
diately after the receiving of Pc.5 We hypothesize that this
command-response pattern is from a bot instead of a human.
However, observing only this likely command-response pair
is not enough to make the claim, because it could be caused
by chance.6 We want to make sure whether there is truly
a cause-effect correlation between the command and the
response, which is a distinguishing feature between botnet
C&C and human chatting. To achieve the detection goal with
high accuracy, we perform several rounds of active probing
and use a sequential hypothesis testing technique to obtain
enough confidence. The next section will detail the design
space of active probing techniques.

B. Design Choices of Active Probing Techniques

We investigate the design space of active probing strate-
gies and illustrate in Figure 2 several probing techniques
that were considered in our BotProbe system.

P0 (Explicit-Challenge-Response). An example explicit-
validation mechanism is one in which educated users know-
ingly participate in the BotProbe scheme. The BotProbe
system may prompt users to perform a reverse Turing test,
when a new IRC session among two IP addresses is first
encountered by BotProbe. The in-line monitor could request
that the internal human IRC participant visit a website to
read and translate a CAPTCHA [29]. Alternatively, BotProbe
can inject a simple puzzle for the internal participant to
solve. Using this technique, one may detect botnet channels
before observing actual C&Cs, i.e., observing zero rounds
of interaction. Although simple and effective, such a tech-
nique requires user awareness, compliance, and tolerance
to be successful. We further discuss our experience of this
technique in an actual user study in Section IV-C.

P1 (Session-Replay-Probing). The BotProbe monitor
spoofs the address of the server and inserts additional TCP

5Sometimes there is no such a message response packet Pr , but rather
an activity response. We still use Pr to stand for this activity response.

6The false positive rate can be higher, particularly if Pr is only a message
response packet because it could be just a normal prompt chat message from
a human.

Server

Middlebox

Client

time

cm
d1 re

s1

c halle n
ge

cm
d2

cm
d 2, seq’

resp
on

se

Regular
round

P0
Explicit-

Challenge-
Response

cm
d1,se q’ res1

cm
d1' ,se q’ res1'

P1
Session-
Replay-
Probing

P2
Session-

Byte-
Probing

Keep regular
session

re
s2

r e
s 2

,s
eq

’ cm
d

3
cm

d 3
' re

s3
r e

s 3

P4
Man-In-The-

Middle-
Probing

(a) P0,P1,P2,P4: Active probing by injecting packets in existing connection.

Server

Middlebox

Client

time

cm
d1 re

s1

Regular
round

Session-Replay-
Probing

Login as
another user

...

cm
d1

cm
d1

res1

re
s1

Session-Byte-
Probing

cm
d1

'

cm
d1'

res 1'

re
s1

'

(b) P3: Active probing by establishing new connection.

Figure 2. Example active probing techniques. Here cmd′ means a
modified command packet, seq′ means modification is needed on the
sequence/acknowledge number to keep the TCP session.

packets that replay the same application command Pc to the
client several times. If the remote end point is a bot, it will
likely provide responses that are deterministic (with respect
to both content and timing).

P2 (Session-Byte-Probing). The BotProbe monitor ran-
domly permutes certain bytes of the application command.7

If the client is a bot, then we expect it to be highly sensitive
to modifications of commands and hence to respond differ-
ently or drop the modified packet. However, a human user
in an IRC chat channel would have a higher tolerance for
typographical mistakes in an IRC message. We may repeat
our test as many times as necessary by interleaving strategies
P1 and P2, until we have sufficient evidence to validate our
hypothesis. We describe the algorithm (Interleaved-Binary-
Response-Hypothesis) in more detail in Section III-C.

Note that strategies P1 and P2 may break existing con-
nections (by injecting new packets) if subsequent C&C com-
munications occur in the same TCP connection. To recover
from this, our in-line botnet probing system should adjust
the TCP sequence/acknowledge numbers and checksums to
account for the new packets that were introduced because of
the probes. Also, the above two probing strategies introduce
some amount of interference into existing sessions at the
application level. Fortunately, we find that, for our targeted
chat-like protocols, we have an alternate probing technique
(P3), which does not disturb existing sessions.

P3 (Client-Replay-Probing). Chat protocols like IRC and
IM allow users to directly message each other. In such
instances, we instantiate a new user that logs into the channel

7Since many common botnet command names (e.g., .dos, .scan) are
embedded in the initial bytes of IRC PRIVMSG or TOPIC message packets,
we recommend biasing the byte modification algorithm to choose the early
bytes with higher probability.

244

and sends the observed command(s) Pc to the selected client
(pretending to be the botmaster). By doing this, we do not
break existing connections, but achieve an effect similar to
that above. Figure 2(b) illustrates this scenario.

P4 (Man-In-The-Middle-Probing). The above tech-
niques do not directly intercept a new command packet.
However, in some cases (as discussed in Section V) such
as highly stateful C&Cs where simple replaying may not
work, we intercept the new command, and launch a man-in-
the-middle-like chat message injection.

P5 (Multiclient-Probing). The above techniques discuss
probing sessions from a single client. However, when mul-
tiple likely infected clients in the monitored network are
communicating with the same C&C server, we distribute
the probes among multiple clients and reduce the number of
probing rounds needed to test our hypothesis.

C. Algorithm Design for Botnet Detection Using Active
Probing

Based on the active probe techniques, we now describe
several simple detection algorithms for isolating determinis-
tic botnet communication patterns from human chat dialogs
with controlled accuracy (i.e., to achieve a desired false
positive/negative rate). We use a sequential probability ratio
testing (SPRT [30]) technique, which has been successfully
applied in several other scenarios [14], [16]. To illustrate
the algorithm, we start with a basic description of how to
apply a hypothesis testing framework using botnet probing
strategies.

Let us assume that we are given a (suspicious) IRC
session and we want to differentiate whether it is more
likely a botnet C&C channel or a human chat session. We
perform one or more rounds of P0 probing (i.e., inject a
challenge to the client, ask the local participant (within our
network boundary) to solve a puzzle). We denote H1 as
the hypothesis “botnet C&C,” H0 as the hypothesis “normal
chat.” Let a binary random variable D denote whether or
not we observe a wrong reply for a challenge from the
client (that is, D = 1 means an incorrect reply). We also
denote θ1 = Pr(D = 1|H1), θ0 = Pr(D = 1|H0).
If the client is a bot, we presume θ1 ≈ 1, assuming
that bots are unable to reliably solve arbitrary puzzles on
demand. For a human, such a puzzle is easy to answer,
i.e., θ0 ≈ 0. If we want to have very high accuracy for
the hypothesis (let us denote α, β as the false positive
rate and false negative rate we want to achieve), we can
perform several rounds of probing. Then, after observing n
rounds, we get a likelihood ratio Λn = Pr(D1,...,Dn|H1)

Pr(D1,...,Dn|H0)
.

Di represents our independent identical distribution (i.i.d.)
observation result from our client probe test. We define

Λn = ln
∏

i
Pr(Di|H1)∏

i
Pr(Di|H0)

=
∑

i ln Pr(Di|H1)
Pr(Di|H0) . To calculate this

likelihood Λn, we are essentially performing a threshold
random walk (TRW). The walk starts from origin (0), goes

up with step length ln θ1
θ0

when Di = 1, and goes down
with step length ln 1−θ1

1−θ0
when Di = 0. If Λn is greater

than a threshold t1 = ln 1−β
α we declare H1 to be true,

i.e., it is a botnet C&C. If Λn is less than another threshold
t2 = ln β

1−α , this indicates a normal IRC dialog. If Λn is
in between t1 and t2 we proceed with additional rounds of
testing. A nice property of this SPRT/TRW algorithm is that
it can achieve bounded false positive and false negative rates
as desired, and it usually needs only a few rounds to reach
a decision [30]. We call our first extension of the algorithm
Turing-Test-Hypothesis because it uses explicit challenge
response. This algorithm even does not require observing
any actual botnet C&C interaction.

Similarly, we can adapt the algorithm to use the P1
technique in every round. Let Pc be a suspicious command
packet from the server to the client. We replay Pc in each
round and we denote D to indicate whether or not a response
from the client is observed. We call this Single-Binary-
Response-Hypothesis algorithm because this test considers
the probe response as a binary outcome. Depending on the
response we observe (IRC PRIVMSG message, scanning,
spamming, or third-party access), we iterate the TRW pro-
cess at different scales, because θ0, θ1 (the corresponding
probability associated with a bot or human) is different
for different responses. For example, a human-driven IRC
session is very unlikely to perform scanning when receiving
a chat message. Thus, we improve our confidence when
we observe a scanning response corresponding to the re-
played (command) message. If we receive multiple different
types of responses corresponding to the same command, we
choose the one that provides highest confidence (walks a
largest step). The exact number of rounds we need in this
case is discussed in the next section. In general, Single-
Binary-Response-Hypothesis is very effective if the replayed
command packet is scan, spam, or binary download related.
As shown in Section III-D, we may need only one extra
replay in addition to the original command, i.e., two rounds
to detect a botnet.

In addition to performing binary response testing, we
can further evaluate whether the response is similar to the
previous response observed, because bot responses may not
be perfectly identical across multiple command replays. We
hypothesize that for bot C&C communication, responses to
the same command are similar in structure and content. We
can design a new hypothesis algorithm that inspects whether
a response is correlated to previous responses using a simple
edit distance metric or a DICE metric as in [14]. We call this
extension the Correlation-Response-Hypothesis algorithm.

Finally, we introduce the Interleaved-Binary-Response-
Hypothesis algorithm. In each round, we perform inter-
leaved P1 and P2 probing, i.e., replaying the original Pc

packet, and then replaying a modified Pc packet. D = 1
denotes the observation of a response from the replayed

245

Pc, and D = 0 denotes no response from modified Pc.
The assertion is that bots reliably respond to Pc, but do
not recognize the modified command. This occurrence is
then observed as D = 1. To a human user, these two
are similar (a modified Pc is just like a typographical
error (typo), and while chatting, a typo is normal and
generally not a problem). It is hard to predict how normal
users may respond when they receive these two replayed
IRC PRIVMSG messages, but the probability of obtaining
repeatable responses from replayed Pc and no responses
from modified Pc should diminish with rounds. A naive
assumption is that the human responses to tampered packets
are uniformly random, θ0 = Pr(D = 1|H0) = 1/4.
In reality, normal users would quickly lose patience upon
receiving multiple similar IRC messages, and hence this
probability θ0 should be lower than the uniformly random
case. Our later user study (in Section IV-C) also confirms
that θ0 is very low.

One benefit of the Interleaved-Binary-Response-
Hypothesis algorithm is that we can have a general
way to detect a third-party access response and do not
rely on content signatures, e.g., PE header (Microsoft
Windows executable) signature as used in BotHunter [13]
to detect egg downloading. This has the advantage when
we do not have signatures for detecting these third-party
accesses, e.g., the access is not for a Windows executable,
or the access connection does not yield a successful
download of a Windows executable. We begin by building
a suspicious access set containing addresses (most likely,
HTTP addresses) that appear after the Pc but not after the
modified Pc. Then for each subsequent round, we assign
D = 1 if we see an address from the suspicious set still
appear upon replay of Pc, but not upon the sending of the
modified Pc.

We have introduced several different detection algorithms.
Now we discuss the typical selection of proper algorithms
in practice when facing a different type of response or
a different combination of responses. We think that for a
normal chatting host, the probability of performing a certain
(malicious) activity response (e.g., scan, spam) is lower
than that of performing a message response. The general
principle we need to follow here is to choose the algorithm
that favors the response with the lowest probability and
thereby makes the fewest probes and the largest walk in
the threshold random walk. In the following analysis we
assume Prob(scan) ≈ Prob(spam) < Prob(3rd−party−
access) < Prob(message) in the case of a normal chatting
client.

If we observe a scan/spam response associated with
a command (there might be other responses such as an
IRC PRIVMSG message), we choose the Single-Binary-
Response-Hypothesis algorithm on the scan/spam response,
and ignore other responses. Usually, we only need another
active probing (using P1) to declare a botnet as shown in

Sections III-D and IV-B. It is possible that these scan/spam
responses are long-lasting, i.e., we still observe the response
to the original command after we perform P1 (a replayed
command). However, we do not consider this as a problem,
because we still detect the bot. Here our detection perfor-
mance is at least no worse than the approaches that issue
alerts when observing the combination of IRC events and
scan events such as [4] and BotHunter [13].

If we observe a third-party access (by matching a PE
signature) associated with a command (there might be
some message response, but no scan/spam responses), we
choose the Single-Binary-Response-Hypothesis algorithm on
the third-party access response.

For the remaining combination of responses (e.g., a mes-
sage response and a third-party access response without PE
signature capturing) or only a message response, we can
choose Interleaved-Binary-Response-Hypothesis algorithm.
If there are both a message response and a third-party access
observed, to make a walk in the algorithm, we always pick
the type of response that makes a larger step (third-party
access in this case) in the threshold random walk.

D. Evaluating User Disturbance and Detection Accuracy
Tradeoff

We now describe how the above algorithms can be
adapted to trade off user disturbance with system perfor-
mance. For benign IRC chat sessions, replaying or mod-
ifying some byte is essentially equivalent to receiving a
duplicate message or receiving a message with a typo:
humans have natural resilience to at least limited occurrences
of these events. The Client-Replay-Probing technique, which
establishes a new session, is even less harmful. Nevertheless,
we acknowledge that active modifications to user IRC ses-
sions may impose some degree of cost to human users. We
present a more detailed discussion on the legal concerns of
using active techniques in Section V.

As discussed earlier, to have a high confidence of hy-
pothesis testing, we may need N rounds of probing. If we
are concerned about the disturbance/interference to normal
users, we could use the number of rounds (packets modi-
fied/replayed) by active probing as a means to quantify the
degree of disturbance. Clearly, less disturbance means fewer
rounds, smaller N , which on the other hand, may affect the
performance of detection. Fortunately, because of the use of
SPRT, the average number of N to make a decision is quite
small. To produce a botnet C&C declaration, the expected
number of rounds we need is [30]

E[N |H1] =
β ln β

1−α + (1 − β) ln 1−β
α

θ1 ln θ1
θ0

+ (1 − θ1) ln 1−θ1
1−θ0

Similarly, to produce a human user IRC channel declara-

246

tion, the expected number of rounds is

E[N |H0] =
(1 − α) ln β

1−α + α ln 1−β
α

θ0 ln θ1
θ0

+ (1 − θ0) ln 1−θ1
1−θ0

0 0.05 0.1 0.15 0.2 0.25
0

0.5

1

1.5

2

2.5

3

3.5

4

θ
0

E
[N

|H
0]

θ
1
=0.9,α=0.001

θ
1
=0.99,α=0.001

θ
1
=0.999,α=0.001

θ
1
=0.9,α=0.01

θ
1
=0.99,α=0.01

θ
1
=0.999,α=0.01

(a) Average number of rounds to
detect normal IRC user.

0 0.05 0.1 0.15 0.2 0.25
1

2

3

4

5

6

7

8

θ
0

E
[N

|H
1]

θ
1
=0.9,α=0.001

θ
1
=0.99,α=0.001

θ
1
=0.999,α=0.001

θ
1
=0.9,α=0.01

θ
1
=0.99,α=0.01

θ
1
=0.999,α=0.01

(b) Average number of rounds to
detect botnet C&C.

Figure 3. Disturbance to normal user and the effect on detection.

Figure 3 shows the average number of rounds we need
to declare a normal user (a) or bot (b). For example, if
we set parameters θ1 = 0.99, θ0 = 0.15, and our desired
false positive/false negative rates are α = 0.001, β = 0.01,
then the average number of rounds to declare a botnet is
about N1 = 3.7. Likewise, the average number of rounds to
declare a human user is less than two for IRC (approximately
N0 = 1.3). If we observe some scan response, we use a
lower probability of θ0, e.g., θscan

0 = 0.01; then it takes less
than two rounds (e.g., one extra replay) to detect bots on
average.

Our system is bolstered by an IRC channel whitelist to
minimize user disturbance (i.e., once an IRC server/channel
is validated, we will not disturb other users for a certain
time window, and the time window could be randomized).
Finally, the BotProbe strategy should be viewed as one
input among a broader set of threat indicators that can be
applied for detecting internal botnet infections. For example,
the results produced by the BotProbe hypothesis testing
framework could be incorporated into systems such as
BotHunter [13], which considers the full set of potential
botnet-related infection indicators, such as exploit usage, egg
download events, and inbound and outbound attack behavior.

IV. EXPERIMENTS WITH BOTPROBE

A. BotProbe: a Prototype Active Botnet Probing System

We have implemented a prototype middlebox system
called BotProbe for the purpose of evaluating our active
probing techniques. BotProbe is implemented as a collec-
tion of Click routing elements [18]. Click provides a C++
software framework for packet processing, with impressive
scaling performance and a flexible configuration language,
which makes it ideal for building software routers and
middleboxes.

The BotProbe architecture is shown in Figure 4. The key
elements that we developed are WatchList, IRCMatcher, and

F
ro

m
D

ev
ic

e(
vm

ne
t1

)

C
la

ss
if

ie
r

A
R

P
R

es
po

nd
er

M
ar

kI
P

H
ea

de
r

M
ar

kI
P

H
ea

de
r

DNSResponder

IR
C

M
at

ch
er

(W
at

ch
L

is
t)

SimpleResponder

A
ct

iv
eP

ro
be

1

IR
C

Se
rv

er

A
ct

iv
eP

ro
be

2

R
R

Sc
he

du
le

r

To
D

ev
ic

e(
vm

ne
t1

)

Figure 4. Click configuration for BotProbe. The figure shows a con-
figuration for black-box testing on existing bot binaries. If BotProbe is
deployed as a middlebox into a real network, we can remove the IRC
Server, SimpleResponder, and DNSResponder elements.

ActiveProbe. WatchList is a Click “information” element
that keeps track of live TCP flows and IRC records. The
IRCMatcher uses a WatchList to maintain flow records
and examines incoming packets to identify IRC flows. The
ActiveProbe element monitors all IRC flows, performs active
probing if the IRC channel is deemed suspicious, and mod-
ifies TCP sequence/acknowledge numbers and checksums
when necessary.

To simplify black-box testing on existing bot binaries, we
also implemented the following elements: (i) an IRCServer
element, which plays the role of a simple IRC server, (ii) a
SimpleResponder that handles all non-IRC connections by
acknowledging every packet it receives, and (iii) a DNSRe-
sponder that answers DNS queries with a local address. If
BotProbe is deployed in-line as a middlebox into a real
network, we can simply remove these three elements.

B. In Situ Experimental Evaluation

We evaluate the detection performance in a virtual net-
work environment with several malicious IRC bots including
Sdbot, Phatbot, Rbot, RxBot, Agobot, Wargbot, and IRCBot
that we obtained from our bot source code repository and
honeynet capture in the wild. The purpose is to test the
false negative rate, i.e., how many bot C&Cs are missed by
BotProbe? We answer this question using in situ VMware
testing of real-world bot binaries described below. For
false positive evaluation, we will report our user study in
Section IV-C.

1) Detection Performance and Analysis: We begin our
analysis by conducting a series of in situ experiments to
evaluate the false negative rate. We proceed by execut-
ing the bot in a Windows XP (VMware guest) instance
and monitoring with BotProbe running on the Linux host
machine. Initially, BotProbe essentially acts as a faithful
NAT middlebox interposing all communications between the

247

infected host and the Internet. If the IRCMatcher element
identifies an IRC session, the flow will be forwarded to
the IRCServer element that handles and responds to all
IRC requests. The ActiveProbe element resides between the
bot client and the IRCServer element, monitoring chatter
and introducing active probes at appropriate times (e.g.,
when the channel is idle on a suspicious session). While
the IRCServer element has the actual botnet commands,
we do not assume that the ActiveProbe element knows the
commands, as BotProbe runs in the realistic scenario.

Note, in real-world IRC based botnets, we observe that
most of the commands are in IRC TOPIC messages, because
the botmasters are not online all the time. To instruct bots
even when they are not online, botmasters usually put the
commands in the TOPIC of the channel. Thus, whenever a
bot joins the channel, it will understand the commands in
TOPIC and execute (without authentication). In such cases
where there is no PRIVMSG message from the server but
client responses are still produced, we can presume that
the TOPIC is the command and play the probing game by
manipulating observed TOPIC messages (332). We use this
trick in our experiments, in order to faithfully replicate real-
world scenario. In addition, as discussed in Section III-C,
BotProbe performs a Single-Binary-Response-Hypothesis or
Interleaved-Binary-Response-Hypothesis algorithm in our
experiments depending on what kind of (combination of)
response(s) it observes.

We evaluate BotProbe on several real-world IRC bots that
can be grouped into three classes.

1. Open-source bots with obfuscated communica-
tion.: Our first case study is an “open source” (as described
in the bot documentation) IRC bot called Spybot, which
was released in 2003. Being open source, many variants
of this bot are on the Internet, making it one of the more
popular botnet families [3], [7]. Spybot is also equipped
with a command encryption option that obfuscates C&C
communication. The encryption method implemented is a
simple byte shift scheme. We recompiled the Spybot source
with the encrypt option enabled and tested the binary using
BotProbe.

In evaluation, we configured the IRCServer to issue a
set of commonly used commands listed in Table I (one
command in each test). We set the parameters of the
hypothesis testing algorithm to be θ1 = 0.99, θ0 = 0.15
giving expected false positive (FP) and false negative (FN)
rates of 0.001 and 0.01, respectively.8 We set θscan

0 = 0.01,
because the probability that a normal chatting client has
scan response is low (much lower than an IRC message
response). Similarly, for a third-party access response, we set
θ3rd−party−access
0 = 0.02. We used this parameter setting

across all experiments. In the test on Spybot, BotProbe

8This θ0 is for the case of Interleaved-Binary-Response-Hypothesis on
message response only.

took two probes when the command was “scan” (Single-
Binary-Response-Hypothesis algorithm was automatically
performed), two probes when the command was “download”
(Interleaved-Binary-Response-Hypothesis algorithm was au-
tomatically performed because we do not use any PE signa-
ture to identify access response), and four probes when using
commands such as “info” and “passwords” (Interleaved-
Binary-Response-Hypothesis algorithm was automatically
performed).

2. Bot binaries with cleartext communication.: We
tested a few other bots, e.g., Phatbot, Rbot, Rxbot, Sdbot [3],
in our controlled network. In these experiments, C&C ex-
changes are in cleartext by default. However, we noticed
that the source code for these bots includes encryption and
decryption functions, shell code encodings, and support for
polymorphism. It is straightforward to enable the use of
these encryption routines for command obfuscation. The
performance of BotProbe on these bots was identical to
Spybot, i.e., it took two or four rounds of probes, depending
on the command.

3. Bot binaries with obfuscated communication.:
Next, we tested on a recent bot binary (W32.Wargbot as
labeled by Symantec) captured in the wild. The botmaster
put an encrypted command (shown below) in the IRC
TOPIC message for bots to execute upon joining the chan-
nel. Subsequently, BotProbe automatically performed the
Single-Binary-Response-Hypothesis algorithm, and it took
only one extra probe to declare the bot because the bot had
background scanning behavior.
!Q ;\\|!Q <W:Z<Z=B=B=>;P;E;E<[=;<Y=>=:<S<U<W;D<U===;;E<V<[=@<W<U=B===@=G;E<V
<[=@;I;O;N;O;E;G;G;N;G;J;H;L;G;O;H<Q;M;J;F;K;D<\\=><Y

We then enabled the Interleaved-Binary-Response-
Hypothesis algorithm on the same bot. Again BotProbe
took two total rounds to declare the bot, and this time
it reported observing a third-party access response (the
bot initiated an HTTP GET request when it received the
TOPIC command), which was suppressed in the previous
test because BotProbe automatically chose Single-Binary-
Response-Hypothesis once it observed scanning behavior
(which yielded a larger walk in TRW than the case
observing a third-party access response, as discussed in
Section III-C).

This third-party access response is interesting because
it established some mapping between the obfuscated com-
mand and the corresponding visited URL. By intentionally
changing a different portion of the obfuscated command and
watching the corresponding URL, we can perform a chosen-
ciphertext attack to crack the obfuscation scheme. BotProbe
again demonstrated its extra utility in automating the in-
formed active probing and collecting the mapping for our
analysis, in addition to detecting the bot. By interrogating
the bot with single byte modifications using BotProbe we
were able to reverse engineer the encoding scheme used by
the bot. The actual command after decoding is

248

Table I
BOTPROBE TEST ON SPYBOT AND RBOT.

Bot Original cmd Obfuscated cmd IRC response Activity response No. rounds
Spybot info otlu Version:... cpu:... - 4

passwords vgyy}uxjy Error operation failed - 4
scan 192... yigt&7?847<>477<4<&79?&7 Portscanner startip:... scan 2
download http:... ju}trugj&nzzv@55oxi... download http:... 3rd-party access 2

Rbot .id - [MAIN]: Bot ID: rx01. - 4
.sysinfo - [SYSINFO]: [CPU]: ... - 4
.scan 192... - [SCAN]: Port scan started... scan 2

" F |" e http://img2.freeimagehosting.net/uploads/03bd27490b.jpg

Here the original obfuscated !Q (") is likely to be a
command prefix and | is a separator between commands.
We are unsure about the meaning of the translated “F”
command, but suspect that “e” is a download command
followed by a URL. Breaking the encoding/decoding scheme
is interesting because it enables us to decode other com-
mands we observe for different variants of this botnet. In
our honeynet, we have observed at least two other commands
issued by the same botnet (with different bot binaries).9 The
changes in commands reflected relocation of binary hosting
websites and file names. Apparently, the original hosting
site (media.pixpond.com) was no longer available, so the
botmaster switched to two other websites (imgplace.com and
img2.freeimagehosting.net).

Although we successfully launched a chosen-ciphertext
attack to break the encryption scheme of some botnets with
the assistance of BotProbe, there are still some cases where
we could not break the scheme. However, these instances
were all successfully detected as botnet C&C by BotProbe.
We captured a contemporary bot in our honeynet, which
is labeled as Trojan.Dropper.Sramler.C by several AV tools.
This bot uses C&C obfuscation and it makes several DNS
requests, which all translated to the same IP address, demon-
strating multiple degrees of stealthiness. The command we
observed (shown below)10 is apparently an update/download
command because BotProbe successfully identified a third-
party access response (using Interleaved-Binary-Response-
Hypothesis algorithm and probing only two rounds), i.e., a
download from http://220.196.X.107/packed 7711.exe.

=xAgVMf81RvN+xBBhG+xXwttpTsaSBfWeekvMkmkVNcbo20jZvmkCo7CUUbRsdRPzz6wiS1O
Y8pcXg3d9ucVufq2bgQ1mvh+9OBJDwIuw1kOamPaw+2jw/CTaWVQRjrX8Xl2Iph

After a few months, we captured a new variant of this bot,
which is labeled as Backdoor.Win32.IRCBot.aby by several
AV tools. We verified that this is essentially the same botnet
as the aforementioned botnet, as they both contacted the
same IRC server 220.196.X.226, The bot observed in June
contacted port 3938 while the later bot contacted the server

9We know that it is the same botnet because the binaries use the same
C&C channel.

10At first glance, this looks like a BASE64 encoded string. However, we
verified that this is not the case, at least not a pure BASE64 scheme.

on port 2234 with the following command:11

=YXCdm8MDxhmOoBo3aSrxyp83pM5yZRnQVt8O+mVxm9bwLd77Ahc6KWKVn/DWu+ACn4mrpT
j6U5+yXie37WfPaymQmLtbkxPUVB2JaMwddAVokDxqsbjxmPlqpjeQIh

It turns out that this is actually an access to 220.196.X.
107/kk.exe, and BotProbe took only two rounds to flag this
as a botnet C&C communication. To conclude, BotProbe
has a 100% detection rate in recognizing IRC-based botnet
C&Cs, despite the presence of obfuscated communication.

C. User Study on Normal Chat Probing

Now we need to test the false positive rate, i.e., how
frequently could normal chatting sessions be mislabeled as
botnet C&C using BotProbe techniques. We explore this
issue through a user study on about one hundred users.

Study design and ethical guidelines: Since we are not
allowed to directly alter live network flows on campus,
we recruited human users to go online and chat with real
users at diverse channels on multiple networks. During the
chat sessions, our human users periodically sent crafted
messages that simulate the effect of botnet probing. Our
goal was to confirm our hypothesis about human response
to tampered messages and evaluate the degree to which
simulated BotProbe techniques affect normal users, e.g., how
many actual rounds would we need on average to detect
a normal user? While our current study is limited to two
different chat platforms, IRC and meebo.com (a website
providing instant messaging and chat room capabilities), we
believe that our results hold across chat platforms because
they simply capture basic human responses.

Our study protocol was reviewed and approved by the
institutional review board (IRB). To alleviate any privacy
concerns, we anonymized usernames and IP addresses and
recorded only the following necessary information: mes-
sages exchanged and timestamps. Furthermore, although
we introduced additional network flows, our methodology
caused no interference to existing IRC network flows.

Participant selection: We logged into different IRC/meebo
sites/channels and randomly selected active chat users who
were exchanging chat messages in the channel when we
logged in. We started engaging them in conversations just
like normal users. The users we contacted were not aware

11The fact that the same IP address remained as the C&C server for
over 3 months suggests that obfuscated botnets might be more resilient to
detection.

249

of the study or the active probing techniques/algorithms that
we employed. This was necessary to ensure the fairness of
our testing procedure.

Study procedure: We designed six different question sets
to test on 123 different users. Our question set includes
simple messages like “what’s up,” “nice weather,” “you like
red?” “how may I help you?” “English only! I play nice
fun” and Turing test messages such as “what’s 3+6=?” As
we conversed with a user on a chatting channel/room using
a random question set, we deliberately introduced probing
at certain predefined points. We then measured the user’s
responses to these tampered messages. The conversations
we recorded could be broken down into two classes.

First, although we randomly chose a user who seemed to
be active in the chat room/channel, there is always a chance
that the user does not respond to our overtures. Such cases
occurred 26 times (no active replies to our messages). We
discount these cases from subsequent analysis. Second, if
the user was willing to pursue a conversation, by responding
to our first question, we followed by sending two or three
rounds of repeated questions that interleave original and
slightly tampered messages (by introducing a typo in the
first few bytes of the message). Some examples of tampered
messages include “waat’s up,” “noce weather,” “aou like
red?” “Bow may I help you?” “Eaglish only! I play nice
fun.” This simulates the behavior of BotProbe performing
P1/P2 probing. We recorded the exchanged messages for
evaluating the Interleaved-Binary-Response-Hypothesis al-
gorithm. In addition to P1/P2 probing, we subjected the user
to P0 probing using the Turing-Test-Hypothesis algorithm
described above.

Table II
USER STUDY OF PERFORMING P1 AND P2 PROBING, USING THE

INTERLEAVED-BINARY-RESPONSE-HYPOTHESIS ALGORITHM. MOST

USERS ARE DETECTED AS NORMAL IN TWO OR THREE ROUNDS.

meebo chats IRC chats Total
Detected in 2 rounds 63 (75%) 10 (77%) 73 (75.3%)
Detected in 3 rounds 8 (9.5%) 1 (7.7%) 9 (9.3%)
Pending after 3 rounds 13 (15.5%) 2 (15.3%) 15 (15.4%)

Total 84 13 97

User study of Interleaved-Binary-Response-
Hypothesis: In total, we tested 97 different users, 84
on meebo and 13 on IRC. A simulated BotProbe can
detect most of the normal users (75.3%) in just two
rounds and 9.3% in three rounds. The rest (about 15%)
are marked still pending. We provide a summary of our
results with respective to breakdowns for meebo and IRC
in Table II. We set our probing to be three rounds to limit
annoyance/interference to chat users. We further believe
that most of the pending sessions can be easily declared as
normal users by sending additional probes (we selectively
verified this on a few cases). Finally, we did not encounter
any false positives (misclassifying a normal user as a bot)

in our limited testing.
User study of Turing-Test-Hypothesis: In addition to

P1 and P2 probing, we tested P0, i.e., injecting Turing test
messages (but without user education). We performed tests
on 30 different users in meebo. The basic question/puzzle
we sent is “what’s 3+6=?” Although all users provided the
correct answer upon repeated interrogation, we found it
difficult to get a direct answer the first time the question
is posed. These users tend not to answer this in a correct
way, possibly because they thought it might be unnatural
to receive such Turing questions in the chatting channels
(they perceive this to be some sort of a joke). We conclude
that if users are not educated to be familiar with such
Turing tests or have an unusually strong desire to be in a
channel, it is difficult to perform generic Turing tests on IRC
or meebo networks. This also illustrates that although P0
probing seems simple and effective (if users are educated),
there is still a need for alternative and transparent techniques
that require no explicit user education (like our P1-P5
techniques).

V. POLICY IMPLICATIONS AND LIMITATIONS

A. Policy Concerns

It is likely that in some cases there are legal “bots,” e.g.,
some client-side legitimate programs or automatic scripts
that build their application logic over the chat protocols such
as IRC. For instance, some chat bots [8] can also be detected
by BotProbe. A possible solution is to whitelist these legiti-
mate applications if they are very important and critical, and
do not want to be disturbed (we expect such applications to
be very few). However, we think probing a pure chat bot is
not very critical, and arguably, the detection of such a chat
bot is not considered as a false positive. Furthermore, there
are several heuristics that can help differentiate these chat
bots from real malicious bots. For example, unlike malicious
bots, chat bots are unlikely to generate activity responses
(e.g., scan response). In addition, we can consider a group
property (similar to the group analysis in BotSniffer [14] and
BotMiner [12]) to differentiate a malicious botnet, where
clients in the same channel are mostly bots, from a normal
human chat channel with mostly human and very few chat
bots.

Our active probe techniques might be deemed contro-
versial because they alter network flows to human users,
and may replay malicious commands. In Section III, we
have discussed the tradeoff between detection accuracy and
disturbance to human users and various means to mitigate
interference with legitimate chat sessions. We now consider
potential policy implications of replaying a “potentially ma-
licious command packet.” First, we argue that to minimize
liability issues, the only packets that should be tampered
with by BotProbe are packets that are inbound to the local
network. Second, this potentially malicious command has
already been transmitted into our network and executed on

250

the local host prior to our probing. Third, if the purpose of
the command is information gathering (e.g., .sysinfo),
then we argue that the first command-response already leaks
enough information, and our further replay most likely
does not leak more information or perform more harm. In
short, although controversial, we believe that the benefits
of actively probing suspicious sessions could outweigh the
potential disturbance in many cases. We believe a more
formal study of cost-benefit analysis and risk assessment
is needed in this area. We leave this as our future work.

B. Limitations and Potential Solutions

As stated in Section II, BotProbe has clear assumptions
to limit its application to a certain class of botnets that
use chatting-like C&C. Next, we describe some possible
evasions,12 although we have not observed real examples
yet, and discuss some potential solutions.

Strong encryption: Active probing techniques cannot
identify botnet C&C channels that use strong encryption
schemes (e.g., SSH, SSL) making them resilient to replay
attacks. Note, however, that existing passive perimeter mon-
itoring strategies cannot detect such channels either, and
most contemporary IRC bots avoid or use weak encryp-
tion/obfuscation schemes. At a minimum, BotProbe raises
the bar and forces all botnets to adopt strongly encrypted
communications. Arguably, using such strong encryption
channels sometimes may actually expose them as suspicious
and thus not desired by botmasters in some cases.13 We
envision that combining both networ- and host-based mon-
itoring could be helpful in recognizing botnets using strong
encryption, and leave it as our future work.

Timer-based evasions: Knowledgeable adversaries could
design bots to have programmed timers that greatly delay
the response time (the time between the command and
response), or limit the number of commands of the same
type that could be issued to the bot in a certain time window.
By using such timers, a bot can potentially evade our Single-
Binary-Response-Hypothesis algorithm. Note, however, this
would also reduce the efficiency of the botnet because the
botmaster cannot command the botnet promptly, or repeat
the same task for a certain time. Our potential solution
against such an attack is to randomize the delay in command
replays.

Stateful C&C protocols: Our P1 and P2 probing
techniques assume a stateless C&C protocol, i.e., we can
replay the observed command several times, and the bot
always responds similarly to the same command. In the
future, botmasters may create a stateful command proces-
sor that can detect duplicate commands, e.g., by using a

12Most of these evasions are against Single-Binary-Response-Hypothesis
and Interleaved-Binary-Response-Hypothesis algorithms. That is, the
Turing-Test-Hypothesis algorithm could still work.

13In many cases, a simple obfuscation scheme such as substituting
”scan” with ”hello” is much less suspicious than using strong encryption
protection.

timestamp or sequence number with every command sent,
making simple replay ineffective. Note, most contemporary
IRC botnet command-response protocols are stateless and
deterministic. In addition, our P0 probing can still work
even in this evasion. Moreover, to counter this possible
future evasion, we describe a potential solution if there are
multiple command-response rounds and multiple clients in
the monitored network. Instead of replaying packets, we
could intercept and modify chatting packets sent to subse-
quent clients by using P4 and P5 probing techniques. By
intentionally modifying the command sent to some clients
while leaving commands to other clients untouched, we
could measure the difference in response between messages,
which would be analogous to replaying the command to the
same client several times in an Interleaved-Binary-Response-
Hypothesis test.14

Finally we envision that given the complex nature of
botnets, a combination of different techniques (network- and
host-based, passive and active) is probably necessary for
future botnet detection. Although BotProbe is imperfect and
limited, it has its unique detection merit to contribute to
multi-perspective botnet detection.

VI. RELATED WORK

Several recent papers propose different approaches to
the botnet detection problem. Livadas et al. [20], [27]
proposed a machine-learning-based approach for botnet de-
tection using some general network-level traffic features of
chat traffic protocols such as IRC. Karasaridis et al. [17]
studied network flow-level detection of IRC botnet con-
trollers for backbone networks. Ramachandran et al. [24]
proposed using DNSBL counter-intelligence to find botnet
members who generate spam. Rishi [10] is a signature-
based IRC botnet detection system that tracks IRC bot
nickname patterns. BotGraph [35] is a tool to detect botnet
spamming attacks targeting major Web email providers.
Binkley and Singh [4] proposed combining IRC statistics
and TCP work weight for detection of IRC-based botnets.
Giroire et al. [9] proposed to track the persistence of
new connection destination that is not already whitelisted to
identify suspicious C&C destinations. Wurzinger et al. [32]
proposed an automatic method to generate network-level
botnet signature/model of a given bot binary based on the
botnet command-response pattern. Yen and Reiter proposed
TAMD [34], a system that detects centralized botnets by
aggregating traffic that shares the same external destination,
similar payload, and that involves internal hosts with similar
operating systems. BotHunter [13] is a passive bot detection
system that uses IDS dialog correlation to associate IDS
events to a bot infection dialog model. BotSniffer [14] and
BotMiner [12] are two botnet detection systems that utilize

14Here we assume the C&C is one-to-many, i.e., one command to many
clients in the network.

251

horizontal correlation to perform a spatio-temporal group
analysis across multiple hosts. In [8], entropy and machine-
learning-based approaches are proposed to detect chat bots
(not botnet C&C). This work has a similar limitation in that
it requires observing many chat messages before making a
decision and thus is not suitable for detecting infrequent
botnet C&C interactions. In a short summary, the afore-
mentioned systems are all passive, and this paper describes
several active botnet-probing techniques, which have unique
advantages and can complement existing detection schemes.

Several other papers discuss various means to modify net-
work traffic for security purposes. Protocol-scrubbing [31]
techniques modify network flows transparently to remove
ambiguities from flows that can reveal implementation-
specific details of a host’s operating system. Traffic nor-
malization [15] is a technique to limit evasion opportunities
by eliminating potential ambiguities before the traffic is
seen by the IDS monitor. Kaleidoscope is an in-line system
that protects honeynets by dynamically shuffling network
address blocks [33]. These techniques need to process and
then forward all packets sent to the network. In comparison,
BotProbe needs to inject packets very rarely and affects only
a very small number of flows.

VII. CONCLUSION AND FUTURE WORK

We proposed the idea of using active probing techniques
to detect botnet C&C communications that use chat-like
protocols. By requiring the observation of at most one
round of actual C&C interaction and then applying active
probing, this approach, unlike existing passive approaches,
can actively collect evidence and shorten the detection
time. We have developed a hypothesis testing framework
and a prototype system implementation that effectively
separates deterministic botnet communication from human
conversations, while providing control over false positives
and detection rates. We validated our system on several
contemporary malicious IRC bots and conducted an actual
user study on around 100 users. Our experimental results,
while preliminary, are encouraging. BotProbe is not intended
to replace existing passive detection approaches, but to
complement them from a new perspective.

This work represents the first feasibility study of the use
of active techniques in botnet detection; thus, we hope to
inspire new thoughts and directions in the research commu-
nity. While controversial and clearly limited, BotProbe has
demonstrated its effectiveness in detecting a large portion
of contemporary real-world botnets. In future work, we will
study robust, practical, and less controversial extensions of
active techniques and apply to a more general class of
botnet C&C detection (e.g., applicable to HTTP- and P2P-
based botnets). In addition to detection, active techniques
can be used for other purposes, e.g., server-side probing
and injecting watermarks to trace the location of botmasters.

We plan to investigate these new potential utilities of active
techniques in the future.

ACKNOWLEDGMENT

The authors would like to thank Jon Giffin, Nick Feamster,
Roberto Perdisci, and Junjie Zhang for comments on an early
version of this paper, and thank Mike Hunter for the help
in user study. This material is based upon work supported
in part by the National Science Foundation under grants
no. 0716570 and 0831300, the Army Research Office under
Cyber-TA Grant no. W911NF-06-1-0316, the Department
of Homeland Security under contract no. FA8750-08-2-
0141, and the Office of Naval Research under grant no.
N00014-09-1-1042 and N00014-09-1-0776. Any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily
reflect the views of the National Science Foundation, the
Army Research Offic, the Department of Homeland Security,
or the Office of Naval Research.

REFERENCES

[1] Hi-performance protocol identification engine. http://hippie.
oofle.com/.

[2] Shadowserver. http://shadowserver.org.

[3] P. Barford and V. Yegneswaran. An inside look at botnets.
Special Workshop on Malware Detection.

[4] J. R. Binkley and S. Singh. An algorithm for anomaly-
based botnet detection. In Proceedings of USENIX Steps
to Reducing Unwanted Traffic on the Internet Workshop
(SRUTI), 2006.

[5] M. Collins, T. Shimeall, S. Faber, J. Janies, R. Weaver,
M. D. Shon, and J. Kadane. Using uncleanliness to predict
future botnet addresses. In Proceedings of the 2007 Internet
MeasurementConference (IMC’07), 2007.

[6] Cyber-TA. Multi-perspective malware analysis. http://www.
cyber-ta.org/releases/malware-analysis/public/.

[7] F. Freiling, T. Holz, and G. Wicherski. Botnet tracking:
Exploring a root-cause methodology to prevent denial of
service attacks. In Proceedings of ESORICS, 2005.

[8] S. Gianvecchio, M. Xie, Z. Wu, and H. Wang. Measurement
and classification of humans and bots in internet chat. In
Proceedings of the 17th USENIX Security Symposium (Secu-
rity’08), 2008.

[9] F. Giroire, J. Chandrashekar, N. Taft, E. Schooler, and K. Pa-
pagiannaki. Exploiting temporal persistence to detect covert
botnet channels. In 12th International Symposium on Recent
Advances in Intrusion Detection (RAID’09), 2009.

[10] J. Goebel and T. Holz. Rishi: Identify bot contaminated hosts
by IRC nickname evaluation. In USENIX Workshop on Hot
Topics in Understanding Botnets (HotBots’07), 2007.

252

[11] J. B. Grizzard, V. Sharma, C. Nunnery, B. B. Kang, and
D. Dagon. Peer-to-peer botnets: Overview and case study. In
USENIX Workshop on Hot Topics in Understanding Botnets
(HotBots’07), 2007.

[12] G. Gu, R. Perdisci, J. Zhang, and W. Lee. BotMiner: Clus-
tering analysis of network traffic for protocol- and structure-
independent botnet detection. In Proceedings of the 17th
USENIX Security Symposium (Security’08), 2008.

[13] G. Gu, P. Porras, V. Yegneswaran, M. Fong, and W. Lee.
Bothunter: Detecting malware infection through IDS-driven
dialog correlation. In 16th USENIX Security Symposium
(Security’07), 2007.

[14] G. Gu, J. Zhang, and W. Lee. BotSniffer: Detecting botnet
command and control channels in network traffic. In Pro-
ceedings of the 15th Annual Network and Distributed System
Security Symposium (NDSS’08), February 2008.

[15] M. Handley, V. Paxson, and C. Kreibich. Network intru-
sion detection: Evasion, traffic normalization, and end-to-end
protocol semantics. In Proceedings of the 10th Conference
on USENIX Security Symposium, Berkeley, CA, USA, 2001.
USENIX Association.

[16] J. Jung, V. Paxson, A. W. Berger, and H. Balakrishnan. Fast
portscan detection using sequential hypothesis testing. In
IEEE Symposium on Security and Privacy 2004, Oakland,
CA, May 2004.

[17] A. Karasaridis, B. Rexroad, and D. Hoeflin. Wide-scale botnet
detection and characterization. In USENIX Hotbots’07, 2007.

[18] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F.
Kaashoek. The click modular router. ACM Transactions on
Computer Systems, 18(3):263–297, 2000.

[19] R. Lemos. Bot software looks to improve peerage. http:
//www.securityfocus.com/news/11390.

[20] C. Livadas, R. Walsh, D. Lapsley, and W. T. Strayer. Using
machine learning techniques to identify botnet traffic. In
2nd IEEE LCN Workshop on Network Security (WoNS’2006),
2006.

[21] V. Paxson. BRO: A System for Detecting Network Intruders
in Real Time. In Proceedings of the 7th USENIX Security
Symposium, 1998.

[22] P. Porras, H. Saidi, and V. Yegneswaran. A foray into
conficker’s logic and rendezvous points. In 2nd Usenix
Workshop on Large-Scale Exploits and Emergent Threats
(LEET), 2009.

[23] M. Rajab, J. Zarfoss, F. Monrose, and A. Terzis. A multi-
faceted approach to understanding the botnet phenomenon. In
Proceedings of ACM SIGCOMM/USENIX Internet Measure-
ment Conference, Brazil, October 2006.

[24] A. Ramachandran, N. Framster, and D. Dagon. Revealing
botnet membership using DNSBL counter-intelligence. In 2nd
USENIX Steps to Reducing Unwanted Traffic on the Internet
(SRUTI), 2006.

[25] M. Roesch. Snort - lightweight intrusion detection for
networks. In Proceedings of USENIX LISA’99, 1999.

[26] SecureWorks. Bobax trojan analysis. http://www.
secureworks.com/research/threats/bobax/.

[27] W. T. Strayer, R. Walsh, C. Livadas, and D. Lapsley. Detect-
ing botnets with tight command and control. In 31st IEEE
Conference on Local Computer Networks (LCN’06), 2006.

[28] A. Turing. Computing machinery and intelligence. In Mind
Vol.59, 1950.

[29] L. von Ahn, M. Blum, N. Hopper, and J. Langford.
CAPTCHA: Using hard AI problems for security. In Pro-
ceedings of Eurocrypt, pages 294–311, 2003.

[30] A. Wald. Sequential Analysis. Dover Publications, 2004.

[31] D. Watson, M. Smart, G. R. Malan, and F. Jahanian. Pro-
tocol scrubbing: Network security through transparent flow
modification. IEEE/ACM Trans. Networking, 12(2):261–273,
2004.

[32] P. Wurzinger, L. Bilge, T. Holz, J. Goebel, C. Kruegel,
and E. Kirda. Automatically generating models for botnet
detection. In 14th European Symposium on Research in
Computer Security (ESORICS’09), 2009.

[33] V. Yegneswaran, C. Alfeld, P. Barford, and J.-Y. Cai. Cam-
ouflaging honeynets. In Proceedings of IEEE Global Internet
Symposium, 2007.

[34] T.-F. Yen and M. K. Reiter. Traffic aggregation for malware
detection. In Proceedings of the Fifth GI International
Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment (DIMVA’08), 2008.

[35] Y. Zhao, Y. Xie, F. Yu, Q. Ke, Y. Yu, Y. Chen, and
E. Gillum. Botgraph: large scale spamming botnet detection.
In NSDI’09: Proceedings of the 6th USENIX symposium on
Networked systems design and implementation, pages 321–
334, Berkeley, CA, USA, 2009. USENIX Association.

[36] J. Zhuge, X. Han, J. Guo, W. Zou, T. Holz, and Y. Zhou.
Characterizing the IRC-based botnet phenomenon. China
Honeynet Technical Report, 2007.

253

